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EXECUTIVE SUMMARY

Introduction

The legislation (KRS 248.510 - 248.580) which provides funds in support of
the research programs at the Kentucky Tobacco Research and Development
Center (KTRDC) requires that a quarterly research report be submitted to
the Kentucky Tobacco Research Board (KTRB) and the Legislative
Research Commission.

The overall reporting plan is:

January 1 - March 31: Selected topics
April 1 - June 30: Selected topics
July 1 - September 30: Selected topics
October 1 - December 31:  Annual comprehensive report

As required by KRS 248.570, a financial report covering expenditures for the
relevant proportion of the July 1, 2025 — June 30, 2026 fiscal year is included
in this report.

The news and research publications provided in this quarterly report are a
representative selection of the Center’s output. For a full description of all
KTRDC research and activities please refer to the KTRDC Annual Report.

Quarterly News

. KTRDC is collaborating with the UK Cannabis Center to produce
cannabis for clinical behavioral studies. The cannabis plants will be
grown in a specially adapted secure growth room. Low delta-9-
tetrahydrocannabinol (THC) hemp plants have been successfully
grown in the growth room to test the facility. Currently, KTRDC is
waiting on further instructions from the DEA.

e This quarter is always a busy time for the field group.

. Activities at the university farm during this period were mainly
sampling, topping, harvesting and selecting/bagging.

. July was very hot and dry. With the late start to the season, no

topping of agronomic trials was done in July. Topping and
suckering were done in a contact seed yield trial.

August’s activities were mainly topping and suckeride application.
Topping of the agronomic trial was done on August 11. Selection




and bagging were also done in August, and seed harvest of the
seed yield trial began.

September’s activities were harvesting and seed collection, with
harvesting completed on September 11.  Selection/bagging
continued, and by the end of September, the only plants left in the
field were those for seed collection, and the seed yield trial. The
harvested tobacco is now curing.

There were originally work on two farms: the green burley farm test in
Bourbon County and the CORESTA black shank variety trial in Clark
County.

. The on-farm green burley was abandoned after excessively hot dry
weather at transplanting caused loss of most of the transplants.
Disease counts were done on the black shank trial in Clark County
every two weeks until September 4. Soil samples were also
collected from within the rows every four weeks.

e The September board meeting was held in KTRDC conference room and
by Zoom.

Lesley Oliver, Associate Director, Kentucky Agricultural Experiment
Station, talked about the USDA Civil Rights compliance requirement
and asked board members to complete a demographic data form. As
part of our civil rights compliance process, we are required to collect
self-identified demographic information for members of all advisory
boards. This is voluntarily and confidential and only used for reporting
to the USDA for compliance with federal laws.

Elections were held for the Chairman and Vice Chairman of the KTRB.
Mr. Todd Clark was elected to remain Chairman of the board and Mr.
Al Pedigo was elected to remain Vice Chair of the KTRB.

Dr. Yuan, to clear up any confusion with income and the declining tax
revenue, discussed the KTRDC finances and explained how KTRDC
is two units, with the other being CTRP (Center for Tobacco Reference
Products). He presented information regarding income vs expenses
and talked about other funding available that is not part of the cigarette
tax funds. CTRP funds were created from FDA grants and sale of
reference products. Unfortunately, the FDA grants have ended and
future grants are uncertain at this time.

Dr. Barun Patra gave a presentation entitled “Research Projects to
Benefit Kentucky Tobacco Farmers”. The presentation by Dr.
Barunava Patra focused on current research initiatives at KTRDC to



address the major challenges facing Kentucky tobacco farmers. It was
noted that extreme weather events such as drought and flooding, along
with persistent disease pressures, pose serious threats to crop yield
and quality. Research is focused on developing stress-tolerant plants,
particularly through improvements in root system architecture that
enhance water and nutrient uptake, as well as on building disease
resistance using genetic tools.

The presentation also highlighted work on antifungal proteins such as
NaD1, which shows strong activity against key fungal pathogens
affecting tobacco. Strategies include directed evolution to improve
antifungal performance and transgenic approaches to provide durable
resistance, reducing the need for chemical fungicides. These projects
aim to strengthen crop resilience, improve leaf quality, and secure the
long-term sustainability of tobacco farming in Kentucky.

o Abstracts accepted and presentations for the two main tobacco
conferences.

Abstracts for the CORESTA conference were submitted in late May.
One paper, three reports and one poster from KTRDC were presented
for the CORESTA congress in October. The Agro-Phyto Conference
was held in Surabaya, Indonesia and attended by Anne Fisher, Colin
Fisher, and Sitakanta Pattanaik. The Science-Techno Conference
was held in Annecy, France and attended by Huihua Ji.

Abstracts for the TSRC conference were submitted in late May. One
paper and two posters from KTRDC were presented for the
conference in September, held in Knoxville, TN and attended by Ruth
McNees, Huihua Ji, Ying, Wu, Anne Fisher, and Colin Fisher. Anne
Fisher was awarded the 2025 TSRC Lifetime Achievement Award.

The Center for Tobacco Reference Products (CTRP) proficiency testing

(PT) program currently covers the certified reference cigarette, 1R6F, and
the certified reference smokeless tobacco products, 1S4, 1S5, 3S1 and
3S3. CTRP is currently working with A2LA to add the newly produced
certified reference cigars, 1RLC, 1RFC, and 1RSC, to the proficiency
testing program. CTRP received an extension to the accreditation for
proficiency testing to 2029.

The current PT rounds are:



CIG-2025A — The parameters for this round of testing include the
smoking parameters Nicotine-Free Dry Particulate Matter
(NFDPM/Tar), Nicotine, Carbon Monoxide, Water, Hydrogen
Cyanide (HCN), Oxides of Nitrogen (NOx), Total Particulate Matter
(TPM), and Puff Count using the 1R6F reference cigarette and the
2R5F low-deliverable reference cigarette as proficiency test
material smoked in both Non-Intense and the Intense smoking
regimes. This round of testing opened in January 2025. Due to
multiple international laboratories experiencing issues with
importing the test material, the deadline for uploading data was
extended from April 2025 to May 2025. The interim report was
released for participant review in June 2025 and the final report was
released in July 2025.

ClG-2025B — The parameters for this round of testing include the
smoking parameters NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone), NNN (N-nitrosonornicotine), NAT (N-nitrosoanatabine),
NAB (N-nitrosoanabasine), Total Particulate Matter (TPM), and Puff
Count using the 1R6F reference cigarette as proficiency test
material smoked in both Non-Intense and the Intense smoking
regimes. This test also includes the determination of physical
properties of the test material namely: cigarette resistance to draw
(pressure drop open), cigarette resistance to draw (pressure drop
closed), filter pressure drop (fully encapsulated), total ventilation,
filter ventilation, tobacco weight, cigarette weight, air permeability,
firmness, circumference, cigarette length, filter plug length, and
tipping paper length. This round of testing opened in March 2025.
Due to multiple international laboratories experiencing issues with
importing the test material, the deadline for uploading data was
extended from June 2025 to August 2025. The interim report was
released for participant review in August 2025 and the final report
was released in September 2025.

CIG-2025C — The parameters for this round of testing include
cigarette filler analysis for Oven Volatiles (Moisture), pH, Total
Nicotine, NNN (N-nitrosonornicotine), NNK (4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone), NAT (N-nitrosoanatabine), NAB (N-
nitrosoanabasine), Arsenic (As), Cadmium (Cd), and Ammonia
(NH3) using the 1R6F reference cigarette as proficiency test
material. This round of testing opened in May 2025. The data portal
for participants to upload data is scheduled to close in September
2025, but extended to October 2025. The interim report was



expected to be released in October 2025 and the final report in
November 2025.

« SMK-2025D — The parameters for this round of testing include
analysis of 1S5 (Snus) and 3S1 (Loose Leaf Chewing Tobacco) for
Total Nicotine, Free Nicotine, NNK (4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone), NNN (N-nitrosonornicotine), NAT (N-
nitrosoanatabine), NAB (N-nitrosoanabasine), Acetaldehyde,
Crotonaldehyde, Formaldehyde, Benzo[a]pyrene, Cadmium,
Arsenic, pH, and Moisture. This round of testing opened in August
2025. The deadline for uploading data is set for January 2026. The
interim report is scheduled to be released for participant review in
January 2026 and the final report is scheduled to be released in
February 2026.

| would like to thank Ms. Anne Fisher, Ms. Cindy Stidham, and Dr. Ruth
McNees for their help with preparing this report.

The KTRDC Quarterly Reports include copies and brief summaries of work
published by KTRDC scientists and scientists partly funded by KTRDC.
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Report #1 “Exploring the Microbial Diversity and Composition of Three
Cigar Product Categories’.

Sanjay Joshi, Kent Pham, Luke Moe, Ruth McNees

This research provides an overview of the total bacterial population within
various cigar products sampled from three different cigar product categories.
High throughput sequencing of the V4 hypervariable region of the 16 s rRNA
gene was employed to identify bacteria within a complex population. The
composition of the bacterial population was compared within and across
product types to identify unique and shared bacteria within the various
product categories.

Cigars and cigarillos are emerging as popular tobacco alternatives to
cigarettes. However, these products may be equally harmful to human health
than cigarettes and are associated with similar adverse health effects. We
used 16S rRNA gene amplicon sequencing to extensively characterize the
microbial diversity and investigate differences in microbial composition
across 23 different products representing three different cigar product
categories: filtered cigar, cigarillo, and large cigar. High throughput
sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed
2124 Operational Taxonomic Units (OTUs). Our findings showed that the
three categories of cigars differed significantly in observed richness and
Shannon diversity, with filtered cigars exhibiting lower diversity compared to
large cigars and cigarillos. We also found a shared and unique microbiota
among different product types. Firmicutes was the most abundant phylum in
all product categories, followed by Actinobacteria. Among the 16 genera
shared across all product types were Bacillus, Staphylococcus,
Pseudomonas, and Pantoea. Nine genera were exclusively shared by large
cigars and cigarillos and an additional thirteen genera were exclusive to
filtered cigars. Analysis of individual cigar products showed consistent
microbial composition across replicates for most large cigars and cigarillos
while filtered cigars showed more inter-product variability. These findings
provide important insights into the microbial diversity of the different cigar
product types.



Report #2 “A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-
VIGS) approach to study specialized metabolism in medicinal plants”.

Yongliang Liu, Ruiging Lyu, Joshua J. Singleton, Barunava Patra,
Sitakanta Pattanaik, and Ling Yuan.

The cotyledon-based VIGS method is faster, more efficient, and easily
accessible to additional treatments than the traditional VIGS method.
Cotyledon-VIGS overcomes several issues facing the previously established
VIGS methods and can be used for other non-model plant species. Although
a protocol optimized for one species might work for other species, the
parameters still need to be fine-tuned for each plant species to achieve
optimal results. Each plant species is different with respect to germination
time, size, and morphology of the cotyledon, as well as the sensitivity to
Agrobacterium infection. In our study, the parameters that worked well for C.
roseus did not yield the best results for G. inflata and A. annua. Therefore,
certain conditions, such as age of the seedling, density (ODesog) of
Agrobacterium-suspension, and infiltration time, should be optimized for
each plant species to achieve optimal results.

Virus-induced gene silencing (VIGS) is widely used in plant functional
genomics. However, the efficiency of VIGS in young plantlets varies across
plant species. Additionally, VIGS is not optimized for many plant species,
especially medicinal plants that produce valuable specialized metabolites.
We evaluated the efficacy of five-day-old, etiolated seedlings of
Catharanthus roseus (periwinkle) for VIGS. The seedlings were vacuum-
infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the
tobacco rattle virus (TRV) vectors. The protoporphyrin IX magnesium
chelatase subunit H (ChlH) gene, a key gene in chlorophyll biosynthesis, was
used as the target for VIGS, and we observed yellow cotyledons 6 days after
infiltration. As expected, the expression of CrChiH and the chlorophyll
contents of the cotyledons were significantly decreased after VIGS. To
validate the cotyledon based-VIGS method, we silenced the genes encoding
several transcriptional regulators of the terpenoid indole alkaloid (TIA)
biosynthesis in C. roseus, including two activators (CrGATA1 and CrMYC2)
and two repressors (CrGBF1 and CrGBF2). Silencing CrGATA1 led to
downregulation of the vindoline pathway genes (T30, T3R, and DAT) and
decreased vindoline contents in cotyledons. Silencing CrMYC2, followed by
elicitation with methyl jasmonate (MeJA), resulted in the downregulation of



ORCAZ2 and ORCA3. We also co-infiltrated C. roseus seedlings with TRV
vectors that silence both CrGBF1 and CrGBF2 and overexpress CrMYC2,
aiming to simultaneous silencing two repressors while overexpressing an
activator. The simultaneous manipulation of repressors and activator
resulted in significant upregulation of the TIA pathway genes. To
demonstrate the broad application of the cotyledon-based VIGS method, we
optimized the method for two other valuable medicinal plants, Glycyrrhiza
inflata (licorice) and Artemisia annua (sweet wormwood). When TRV vectors
carrying the fragments of the ChlH genes were infiltrated into the seedlings
of these plants, we observed yellow cotyledons with decreased chlorophyll
contents. The widely applicable cotyledon-based VIGS method is faster,
more efficient, and easily accessible to additional treatments than the
traditional VIGS method. It can be combined with transient gene
overexpression to achieve simultaneous up- and down-regulation of desired
genes in non-model plants. This method provides a powerful tool for
functional genomics of medicinal plants, facilitating the discovery and
production of valuable therapeutic compounds.
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Abstract

Cigars and cigarillos are emerging as popular tobacco alternatives to cigarettes. However, these products may be equally
harmful to human health than cigarettes and are associated with similar adverse health effects. We used 16S rRNA gene
amplicon sequencing to extensively characterize the microbial diversity and investigate differences in microbial composition
across 23 different products representing three different cigar product categories: filtered cigar, cigarillo, and large cigar.
High throughput sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed 2124 Operational Taxonomic
Units (OTUs). Our findings showed that the three categories of cigars differed significantly in observed richness and Shan-
non diversity, with filtered cigars exhibiting lower diversity compared to large cigars and cigarillos. We also found a shared
and unique microbiota among different product types. Firmicutes was the most abundant phylum in all product categories,
followed by Actinobacteria. Among the 16 genera shared across all product types were Bacillus, Staphylococcus, Pseu-
domonas, and Pantoea. Nine genera were exclusively shared by large cigars and cigarillos and an additional thirteen genera
were exclusive to filtered cigars. Analysis of individual cigar products showed consistent microbial composition across
replicates for most large cigars and cigarillos while filtered cigars showed more inter-product variability. These findings
provide important insights into the microbial diversity of the different cigar product types.

Keywords Cigar - Cigarillo - Filtered cigar - 16S rRNA gene amplicon sequencing - Microbiome

Introduction

Cigars in all product categories are emerging as popular
tobacco products due to multiple factors that include lower
cost as a result of the lower taxation rate when compared to
cigarettes and the addition of flavors to cigar products [1,
2]. In recent years, cigars have become the most reported
combustible tobacco product used by youth [3, 4]. A study
conducted in the United States in 2020 of almost one million
middle and high school students that self-reported having
smoked cigars in the past 30 days, showed that the larg-
est proportion of students reported using cigarillos (44.1%),
followed by traditional cigars (33.1%), and filtered cigars

P4 Ruth McNees
ruth.mcnees @uky.edu

Kentucky Tobacco Research and Development Center
(KTRDC), University of Kentucky, Lexington, KY 40546,
USA

Department of Plant and Soil Sciences, University
of Kentucky, Lexington, KY 40546, USA

Published online: 20 August 2024

(22.6%) [5, 6]. In this study, we focus on three different types
of cigars, namely large (traditional) cigars, filtered cigars,
and cigarillos. Large cigars come in a range of sizes and
are made up of tobacco wrapped in leaf tobacco or homog-
enized tobacco leaf (HTL) material. Cigarillos are similar
to large cigars but may be thinner and longer than a normal
cigarette, while filtered cigars resemble cigarettes but are
wrapped with HTL [7]. Cigar products are manufactured
using specific varieties of tobacco which typically undergo
a fermentation process that impacts the microbial population
[8]. Additionally, the commercially available products used
in this study use homogenized tobacco leaves for wrapper
and binders, where applicable, as not all products contain
both wrapper and binder. The products were expected to
have differences as a result of the blend and ratio of the
variety of cigar tobacco used to make the filler, the region
of tobacco growth impacts the quality, and manufactur-
ing processes. Contrary to popular belief, cigars are not
less toxic than cigarettes but are associated with the same
adverse health effects, including addiction to nicotine, oral
lesions, oral cancer, lung cancer, cardiovascular disease, and

@ Springer
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chronic obstructive pulmonary disease [9—12]. Some stud-
ies have suggested that cigar products may be more harmful
to human health than cigarettes [13—15]. Tobacco-specific
nitrosamines (TSNAs) are a class of harmful compounds
known to be carcinogenic and the formation of TSNAs has
been shown to correlate with microbial metabolic activi-
ties [16, 17]. By studying microbial communities in cigars,
organisms and pathways relating to the formation and possi-
ble reduction of TSNAs in tobacco products may be unveiled
[18].

In this study, we use 16S rRNA gene amplicon to char-
acterize the bacterial communities of cigar products in mul-
tiple product categories. 16S rRNA gene amplicon study
is useful when examining multiple taxonomic domains
simultaneously, especially when some of the microbes
are not visually different and cannot be cultured in media
[19]. Similar culture-independent methods have been used
to investigate the microbial diversity of tobacco products,
which revealed increased diversity compared to traditional
culture-based approaches [18, 20]. We utilized the MiSeq
platform to sequence the V4 region of samples representa-
tive of multiple cigar product categories which then allowed
us to compare the similarities and differences between prod-
uct types and analyze the associated microbial communi-
ties. The objective of the study is to extensively character-
ize microbial populations in cigar products that will fill a
research gap and provide data to assess the potential health
impact of cigars, providing important insights for the devel-
opment of more effective tobacco control policies and public
health interventions.

Materials and Methods
Sample Collection and DNA Extraction

A total of 23 different cigar products were obtained from
online vendors and commercial distributors, including four
research cigars (1C1, 1C2, 1C3, and 1C4) from the Center
for Tobacco Reference Products (CTRP) at Kentucky
Tobacco Research and Development Center (University
of Kentucky, USA). The commercially available products
were selected based on market share and sales within the
United States to provide a comprehensive overview of the
microbial compositions. The products were categorized into
three groups: large standard cigars, filtered cigars, and ciga-
rillos, consisting of five, six, and eight brands, respectively
(Table 1). Cigars were randomly selected from the com-
mercial packaging. Filtered cigars were selected from three
packs within a carton, and 3 filtered cigars were randomly
selected from various locations within each pack. Cigarillos
were selected from three foil packs within an upright con-
taining 15 foil packs, the industrial standard for packaging

@ Springer
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Table 1 Tabulation of the different cigar products used with their
name and category

Large cigars Filtered cigars Cigarillos

1C1 1C2 1C3

1C4 Phillies Phillies Black

William Penn Captain Black Phillies Sweet

Garcia y Vega King Edward White Owl black

White Owl Talon White Owl silver

Swisher Sweets Cheyenne Black & Mild

Dutch Masters Djarum Pom Pom sweet
Dutch Masters

Swisher Sweets

of cigarillos, and only one of the two cigarillos was used
for analysis. The large cigars were randomly selected from
a box of cigars containing up to 50 individually wrapped
cigars. For all products tested, all tobacco material was
homogenized prior to DNA extraction. DNA extraction
was performed on freshly opened packages of all prod-
ucts using the ZymoBIOMICS™ DNA miniprep D4300
kit (Zymo Research, Irvine, CA, USA) and following the
manufacturer’s recommended protocol. The extracted DNA
was quantified using QUBIT 4.0. To minimize variability,
we performed three technical replicates for each biological
replicate, and three biological replicates were taken. The
technical replicates were combined prior to sequencing to
ensure that the data presented in the figures represent the
averaged result of the technical replicates, thereby reduc-
ing technical variability. To ensure sterility, each product
was opened under sterile conditions, homogenized in sterile
saline solution (0.85%) using a bag mixer, filtered, and pro-
cessed according to the kit instructions.

Sequencing and Analysis of 16S rRNA Gene
Sequences

We shipped the DNA samples from cigar products to The
University of Michigan, Microbial Systems Molecular Biol-
ogy Laboratory core sequencing facility (http://microbe.
med.umich.edu/services/microbial-community-analysis)
for PCR amplification and sequencing of the V4 region of
the 16S rRNA gene on the Illumina MiSeq platform (dual-
barcoded, paired-end reads, 2 X250 flow cell) according to
Kozich, et al. [21]. Sequence data from MiSeq sequencing
was processed using MOTHUR software (v1.48.5) following
the MiSeq SOP (https://www.mothur.org/wiki/MiSeq_SOP,
accessed January 2023) [22]. We followed the analysis meth-
odology previously published by Law et al., 2020, using the
SILVA reference alignment of the MOTHUR-formatted ver-
sion of the RDP training set (SSU Silva 138 v.18) for clas-
sification [23, 24]. The cigar data set was subsampled and
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normalized to 3436 sequences per sample, which resulted in
2124 OTUs (operational taxonomic units) after classification
at the 0.03 cutoff level. Raw sequence reads for all samples
in this study were uploaded to the NCBI Bio Project data-
base under accession number PRINA1073920.

Statistical analysis was performed using the built-in func-
tions in MOTHUR [22]. We compared bacterial community
structure using the analysis of similarities function (ANO-
SIM) [25]. Observed Richness and Shannon’s diversity were
calculated in MOTHUR and imported into the R program to
compare alpha diversity measures and abundance using the
Kruskal-Wallis rank sum test, with any significant results
further tested by Dunn’s test [26]. The package ggplot2 was
used to plot the data generated from MOTHUR [27]. The
Venn diagram was made using VENNY 2.1 [28].

Results
Sequencing Dataset and Diversity

In this study, we extracted DNA from 69 different samples of
cigar and cigarillo products, resulting in a total of 2,308,008
raw sequencing reads. After filtering out PCR and sequenc-
ing errors, 2,147,392 reads remained, leaving us with an
error rate of 0.95%. We used Good’s coverage estimator
to confirm that all samples had sufficient sampling depth,
with values greater than 98.84%. We then calculated alpha
diversity, which is based on the number of species within a
sample, and measures for richness and Shannon diversity.
We then compared them across cigar types using the non-
parametric Kruskal-Wallis rank sum test. Our results indi-
cate that the three categories of cigars (large, filtered, ciga-
rillos) differ significantly in observed richness and Shannon
diversity. Specifically, filtered cigars showed lower observed
richness and Shannon diversity compared to large cigars
and cigarillos, with large cigars having the highest measure
of alpha diversity (Fig. 1). The Kruskal-Wallis rank sum
test revealed a chi-squared value of 10.02 with a p-value
of 0.01 for Shannon diversity. Using the Dunn test with
Holm correction, we found a significant reduction in Shan-
non diversity in filtered cigars compared to both large cigars
and cigarillos. Additionally, we observed that the microbial
populations of filtered cigars were statistically different from
those of cigarillos (p =0.0388) and large cigars (p =0.0026),
while the microbial populations of cigarillos and large cigars
were not statistically different.

Furthermore, we employed Principal Coordinate Anal-
ysis (PCoA) to assess the dissimilarity of various cigar
samples based on Bray—Curtis distances plotted as the
results in Fig. 2. Subsequently, we subjected the data to
the ANOSIM test, which yielded an R statistic value of
0.193, and the significance level was set at 0.001. These
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Fig.1 Alpha diversity (a) Observed richness (b) Shannon diversity
by product category (Lines connecting box plots indicate significant
difference using the Dunn test. (** P<0.01; *P<0.05). Filtered
cigars showed lower observed richness and Shannon diversity com-
pared to large cigars and cigarillos, with large cigars having the high-
est measure of alpha diversity

findings indicate the presence of significant beta diversity,
which compares the diversity across samples, among the
three cigar categories. Beta diversity analysis is crucial for
comparing the diversity between different environments or
groups, even when raw materials, formulations, and pro-
cesses differ. It highlights differences in the presence or
absence and abundance of microbial species among cigar
types. This approach allows us to understand the distinct
microbial communities associated with each cigar product
category. When comparing filtered cigars with cigarillos,
the computed R-value was 0.29 at a significance level of
0.01, indicating a substantial dissimilarity between the two
groups. Similarly, the comparison between filtered cigars
and large cigars also exhibited a significant level of dis-
similarity. However, in contrast, the comparison between
large cigars and cigarillos did not reach a level of statisti-
cal significance (Table 2).

@ Springer
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Fig.2 Principal component
analysis (PCoA) of Bray—Curtis
distances between cigar samples
of different product catego-

ries. The ellipse is drawn at a
90% confidence level. PCoA
analysis indicated significant
differences in beta diversity
measures between the three

cigar categories 000

PCo Axis 2

PCoA of Bray-Curtis Distances Between Cigar Samples

4 Cigarillos
A Fiter
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Table2 Analysis of Similarities (ANOSIM) test with distance and
category of product. Pairwise comparison using Mothur for each
product type. Experiment-wise error rate: 0.05, pairwise error rate
(Bonferroni): 0.0167. Microbial populations of filtered cigars are sta-
tistically different from those of cigarillos and large cigars

Group Comparison R-value P-value
Cigarillos-Filter-Large 0.19 <0.001%*
Cigarillos-Filter 0.291 0.001*
Cigarillos-Large 0.044 0.087
Filter-Large 0.257 <0.001*

Core and Shared Microbiomes Across Products

In our study, we clustered the overall sequences into 2124
Operational Taxonomic Units (OTUs) with 97% identity
across all 69 cigar samples. The top five bacterial phyla iden-
tified across all cigar types were Firmicutes, Actinobacteria,
Proteobacteria, Acidobacteria, and Bacteroidetes. The most
abundant phyla in all product categories were Firmicutes,
followed by Actinobacteria. Filtered cigars exhibited a
slightly higher abundance of Firmicutes (91.12%) compared
to large cigars (70.29%) and cigarillos (81.55%), while also
showing a decrease in Actinobacteria (2.09%) compared to
large cigars (16.42%) and cigarillos (8.05%) (Fig. 3a). When
we compared the top 30 genera for the three cigar categories,
16 genera (33.3%) were shared among all product types,
while nine genera were specifically shared only by large
cigars and cigarillos. Apart from the core microbiome, there
was no genus similarity between filtered cigars and large
cigars (Fig. 3b). However, there were 13 exclusive genera
only for filtered cigars. The list of shared and unique genera
for each cigar type is provided in Table 3.

@ Springer

Microbial Populations Within each Category
Total Genus Population Within Filtered Cigars

We analyzed seven different filtered cigars including one
research filtered cigar (1C2). The top twenty genera of each
product type were assessed based on the most numerous
OTUs. The filtered cigars 1C2 and Phillies had uniform
microbiome composition for each replicate (Fig. 4). Other
products including Captain Black, Djarum, Talon, and
Cheyenne have similar microbiomes for two of the three
replicates. Djarum, the only filtered cigar product tested that
included cloves with tobacco, had a higher percentage of
Bacillus and Staphylococcus populations compared to other
filtered cigars, whereas 1C2 and Talon had higher Tissierella
genus. Of the seven products in the filtered cigar category,
only the King Edward samples were significantly different
for each replicate tested, making it difficult to determine the
microbial population of this product.

Total Genus Population Within Cigarillos

In the case of cigarillos, we tested nine products. Cigarillo
samples had a more consistent and uniform microbiome com-
position between the replicates. The research cigarillo (1C3),
Black and Mild, White Owl Black, White Owl Silver, and
Swisher Sweets have uniform microbiomes for each replicate
(Fig. 5). For Black and mild, Pseudomonas represented more
than 40% of the microbial population, and Pantoea represented
12% of the population which was the highest compared to
other cigarillo types. White Owl Black and White Owl Silver
had the highest percentage of Staphylococcus compared to
the other products tested. Swisher Sweets and PomPom had
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Fig.3 Core and shared micro-
plome in different categolrles 16.4%
in (a) Phylum level showing Phylum
in each category in percentage B Actinobacteria
(b) Genus level similarity and Bacteria_unclassified
specific to each category in = Bacteroidetes
Venn diagram L] E'.’:f.:fm
Cigarillos Filtered Cigar Large Cigar
b
Large Cigar Filtered Cigar

9

Cigarillos

a higher percentage of Terribacillus compared to other prod-
ucts, and they had similar microbiomes for two of the three
replicates. Bacillus was the most common genus present in
most samples. Two out of three replicates of Phillies Sweet
showed higher levels of Lentibacillus. Dutch Masters and Phil-
lies Black samples were different for each replicate.

Total Genus Population Within Large Cigars

A total of seven products in the large cigar category were
taken including two research cigar products (1C1 and 1C4).
All products have a uniform microbiome for each replicate,
except White Owl which had a consistent microbiome for
two of the three replicates. All large cigar samples show a
higher percentage (8.20-39.46%) of Staphylococcus genus
except William Penn and Garcia y Vega (0.16-2.09%)
(Fig. 6). Additionally, these products showed an increased
percentage of Planococcaceae unclassified (17.62-36.70%)
and Paenibacillus (0.72-4.3%) which was observed at low
levels for the other products tested (0.01-0.08%, with one
replicate on the 1C4 having 2.3%).

Discussion

The use of 16S rRNA gene amplicon sequencing allowed
for a comprehensive characterization of the microbial diver-
sity of cigar and cigarillo products, revealing differences

13

between product types and providing information on vari-
ous microbial populations. This study explores the microbial
diversity of large cigars, filtered cigars, and cigarillos, to
provide insight into the composition of the microbial com-
munities that are unique and shared in these products. Our
study revealed a significant difference in microbial diversity
among the three categories of cigars (large, filtered, ciga-
rillos) based on alpha diversity measures for richness and
Shannon diversity. Specifically, filtered cigars exhibited
lower diversity compared to both large cigars and cigaril-
los. PCoA analysis with the ANOSIM test indicated signifi-
cant differences in beta diversity measures between the three
cigar categories, with the microbial populations of filtered
cigars being statistically different from those of cigarillos
and large cigars. Furthermore, when comparing the top 30
genera for the three cigar categories, the core microbiome
analysis revealed that 16 genera were shared among all three
categories of cigars, while nine genera were shared only
by large cigars and cigarillos. These shared genera such as
Oceanobacillus, Corynebacterium, Staphylococcus, Bacil-
lus, and Pseudomonas are commonly found as the most pre-
dominant genera in tobacco products [29, 30]. The first three
genera are shown to have a direct effect on the fermentation
process [31-33]. Additionally, our study identified 13 exclu-
sive genera only for filtered cigars, such as Tissierella, and
Clostridium_XlIVa. In contrast, there was no genus similarity
between filtered cigars and large cigars (Table 3).
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Table 3 List of genera shared and unique to specific cigar category types

16 common genera in all products

Bacillus

Acinetobacter

Aerococcus
Bacillaceae_2_unclassified
Bacillales_unclassified
Brevibacterium

Corynebacterium

9 common genera in “Large Cigar” and
“Cigarillos”

Yaniella
Lentibacillus
Brachybacterium
Gracilibacillus
Atopostipes
Tetragenococcus

Geomicrobium

1 genus in “Filtered Cigar” and ‘““Cigarillos”

Paenibacillaceae 1 unclassified

Enterobacteriaceae_unclassified Aurantimonas
Oceanobacillus
Paenibacillus

Pantoea
Planococcaceae_unclassified
Pseudomonas

Sphingomonas
Staphylococcus

Terribacillus

13 genera exclusively in ‘“Filtered Cigar”
only
Tissierella Ralstonia

Clostridium_XIVa

Planococcaceae_incertae_sedis Desemzia
Sporomusa Stenotrophomonas
Enterococcus

Lachnospiraceae_unclassified
Veillonellaceae_unclassified
Firmicutes_unclassified
Garciella

Bacilli_unclassified
Clostridiales_unclassified
Clostridium_sensu_stricto

Dendrosporobacter

Bacteria_unclassified

5 genera exclusively in “Large Cigar” only

Rhodobacteraceae_unclassified

4 genera exclusively in “Cigarillos” only

Sedimentibacter
Weissella
Thermoactinomyces

Actinomycetales_unclassified

Staphylococcaceae_unclassified

The presence of certain genera in all cigar types sug-
gests the existence of a core microbiome in these products.
However, there was no significant difference between the
microbial populations of cigarillos and large cigars. The
differences observed in the microbial composition of fil-
tered cigars compared to large cigars and cigarillos could
be due to the type of cigar tobacco (filler leaf, wrapper
leaf), the region the tobacco was grown, the fermentation
method during curing, or the manufacturing process. The
most abundant phyla across all product categories were
Firmicutes, followed by Actinobacteria, which agrees with
similar studies to the one presented here [33-35]. Interest-
ingly, filtered cigars had a slightly higher abundance of
Firmicutes compared to large cigars and cigarillos, while
also showing a decrease in Actinobacteria. A recent study
showed that filtered cigar products have a unique bacterial
signature and certain genera such as Enterobacteriaceae,

@ Springer
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Pantoea, Pseudomonas, and Staphylococcus were more
abundant in the cigar tobacco used to produce the filtered
cigar [1]. Microbial diversity studies conducted on cigarettes
and various tobacco products, including smokeless forms,
have uncovered a similar microbial population as found in
the current study of cigar products [36]. Research on Bur-
ley and Flue-cured tobacco leaves has found Bacillus and
Pseudomonas to be the predominant genera, while Proteo-
bacteria is the dominant phylum, comprising over 90% of
the operational taxonomic units (OTUs) in burley tobacco
leaves [36, 37]. A recent study where sequencing was per-
formed on the samples cultured from the mainstream smoke
of unfiltered cigarettes showed Bacillus, Terribacillus, Pae-
nibacillus, and Desulfotomaculum as their predominant
genera [38]. Furthermore, bacterial community profiling
in smokeless tobacco products revealed Firmicutes, Pro-
teobacteria, Actinobacteria and Bacteroidetes as dominant
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Microbial Population within Filtered Cigars
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Fig.4 Stacked bar chart showing the percentage of the dominant top 20 genera within the microbial population of each filtered cigar sample

Microbial Population within Cigarillos
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phyla and Acinetobacter, Bacillus, Prevotella, Acetobacter,
Lactobacillus were enriched bacterial genera. Additionally,
microbial diversity and composition were determined to be
variable across multiple smokeless tobacco product types
and brands [18, 39-41].

We evaluated for inter-product variability within the
microbiome composition of seven different filtered cigars,

nine cigarillos, and seven large cigars. The filtered cigars
1C2 and Phillies had a uniform microbiome composition
for each replicate, while other products showed some vari-
ability. Djarum had a higher percentage of Bacillus and
Staphylococcus population, while 1C2 and Talon had a
higher Tissierella genus. Cigarillo samples had a more
consistent and uniform microbiome composition between

@ Springer

15



107 Page 8 of 10

S. Joshi et al.

Microbial Population within Large Cigars

10i

|

50

Percentage of Sequences

N
2]

L1 bl [ S R Se—

. Gracilibacillus

B Paenivaciilus

. Bacteria_unclassified

D Brevibacterium

. Ralstonia

Brachybacterium

Pantoea

Pseudomonas

Terribacillus
Enterobacteriaceae_unclassified
Lentibacillus

Oceanobacillus
Bacillales_unclassified
Aerococcus

Yaniella
Bacillaceae_2_unclassified
Planococcaceae_unclassified
Corynebacterium
Staphylococcus

Bacillus

Fig.6 Stacked bar chart showing the dominant top 20 genera of each large cigar

the replicates, and Bacillus was the most common genus
present in all samples. Compared to the other cigar cat-
egories, large cigars showed the highest percentage of
Staphylococcus genus, except for William Penn and Gracia
y Vega, which showed an increased percentage of Plano-
coccaceae unclassified and Paenibacillus. There could be
several factors causing the variation among the products,
natural differences in the microbial populations between
individual cigars as a result of the blend of tobacco used
in manufacturing. The impact on the microbial population
as a result of the manufacturer was not investigated for
this study, as many manufacturers have production facili-
ties in multiple locations, oftentimes in different countries.
A study, conducted by Di Giacomo et al. (2007) on the
microbial community in Italian Toscano cigar tobacco dur-
ing fermentation, observed changes in the relative abun-
dances of specific microbial groups over time [20]. They
found that Bacillus species, including B. licheniformis
and B. subtillis, could reduce NO; without producing N,
gas, while Corynebacterium ammonia genes accumulated
nitrite during subsequent stages of tobacco maturation.
During the curing process of tobacco, changes in microbial
communities were observed as nutrients were depleted, pH
changed, moisture evaporated, and temperature increased.
It also demonstrated a gradual decrease in tobacco pH,
which was attributed to the metabolic byproducts of acid-
producing species [20]. Various discrepancies in abun-
dance and composition are not unexpected considering
that brands are manufactured under different industrial
conditions with proprietary tobacco blends. Another study
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showed that filtered cigar microbiome composition was
dynamic and influenced by environmental factors such as
temperature, humidity, and storage time [42].

Overall, our study provides new insights into the micro-
bial diversity and composition of different categories of
cigars, highlighting the impact of various cigar types and
sizes on microbial populations. These findings hold signifi-
cant implications for the regulation of tobacco products and
the comprehension of potential health impacts arising from
smoking diverse types of cigars. Prior research has demon-
strated the abundance of human pathogens in tobacco prod-
ucts, particularly in cigarettes and smokeless tobacco, which
could result in the development of chronic or infectious res-
piratory disease, as well as cancer [43—46]. Similarly, it is
crucially important for further studies to elucidate the func-
tional roles of these microorganisms in cigar products. In
future studies, it may be possible to link pathogenicity to
the microbial population as species with the genera Bacillus,
Staphylococcus, and Pseudomonas have been identified as
human pathogens. The use of MiSeq technology could be
limited due to amplification bias, sequencing errors, and tax-
onomic resolutions. Utilizing advanced sequencing technol-
ogies and conducting experiments to identify metabolically
active bacteria [34] could be one of the several approaches to
dissecting the impact of microbes on human health. A recent
study highlighted how viable bacteria could survive cigarette
combustion and then be transferred to the upper respira-
tory system via mainstream smoke [38]. Additionally, future
studies could focus on variation within microbiomes based
on various production locations for specific manufacturers.
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Silencing (Cotyledon-VIGS) approach to study
specialized metabolism in medicinal plants
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Abstract

Background Virus-induced gene silencing (VIGS) is widely used in plant functional genomics. However, the
efficiency of VIGS in young plantlets varies across plant species. Additionally, VIGS is not optimized for many plant
species, especially medicinal plants that produce valuable specialized metabolites.

Results We evaluated the efficacy of five-day-old, etiolated seedlings of Catharanthus roseus (periwinkle) for VIGS.
The seedlings were vacuum-infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the tobacco rattle

virus (TRV) vectors. The protoporphyrin IX magnesium chelatase subunit H (ChIH) gene, a key gene in chlorophyll
biosynthesis, was used as the target for VIGS, and we observed yellow cotyledons 6 days after infiltration. As expected,
the expression of CrChiH and the chlorophyll contents of the cotyledons were significantly decreased after VIGS. To
validate the cotyledon based-VIGS method, we silenced the genes encoding several transcriptional regulators of

the terpenoid indole alkaloid (TIA) biosynthesis in C. roseus, including two activators (CrGATAT and CrMY(C2) and two
repressors (CrGBF1 and CrGBF2). Silencing CrGATAT led to downregulation of the vindoline pathway genes (730, T3R,
and DAT) and decreased vindoline contents in cotyledons. Silencing CrMY(2, followed by elicitation with methyl
jasmonate (MeJA), resulted in the downregulation of ORCA2 and ORCA3. We also co-infiltrated C. roseus seedlings

with TRV vectors that silence both CrGBFT and CrGBF2 and overexpress CrMYC2, aiming to simultaneous silencing two
repressors while overexpressing an activator. The simultaneous manipulation of repressors and activator resulted in
significant upregulation of the TIA pathway genes. To demonstrate the broad application of the cotyledon-based VIGS
method, we optimized the method for two other valuable medicinal plants, Glycyrrhiza inflata (licorice) and Artemisia
annua (sweet wormwood). When TRV vectors carrying the fragments of the Ch/H genes were infiltrated into the
seedlings of these plants, we observed yellow cotyledons with decreased chlorophyll contents.

Conclusions The widely applicable cotyledon-based VIGS method is faster, more efficient, and easily accessible
to additional treatments than the traditional VIGS method. It can be combined with transient gene overexpression
to achieve simultaneous up- and down-regulation of desired genes in non-model plants. This method provides
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a powerful tool for functional genomics of medicinal plants, facilitating the discovery and production of valuable

therapeutic compounds.

Keywords Cotyledon-VIGS, Catharanthus roseus, Glycyrrhiza inflata, Artemisia annua

Background

Virus-induced gene silencing (VIGS) has emerged as an
invaluable tool for post-transcriptional gene silencing in
plants [1-3]. Compared to conventional genetic trans-
formation methods, VIGS offers several advantages,
including rapid implementation, efficiency, low cost, and
independence of tissue culture and plant regeneration
processes. VIGS is thus particularly useful for many non-
model and recalcitrant plants [1, 2, 4]. Various RNA and
DNA viruses have been employed in VIGS, and among
them, tobacco rattle virus (TRV) is widely used due to
its broad host range, efficient silencing outcomes, and
mild symptoms on plants [3, 5-7]. TRV-based VIGS has
been successfully applied in a wide range of plant species,
including model plants such as Arabidopsis thaliana [8],
Nicotiana benthamiana [6) and tomato (Solanum lyco-
persicum) [9], crops such as wheat (Triticum aestivum)
and maize (Zea mays) [10], and medicinal plants such as
Catharanthus roseus (Madagascar periwinkle) [11-16]
and Withania somnifera (winter cherry) [17]. Moreover,
TRV-based VIGS have been applied to different plant
organs, including roots [18, 19], leaves [9], flowers [20],
fruits [21], and seeds [22], making it a versatile tool for
functional genomic research. Despite the many advan-
tages of TRV-based VIGS, its broader application is lim-
ited by several factors, including variations in inoculation
methods, as well as low and inconsistent efficiency in
various plant species [23].

Agroinfiltration methods, through syringe or vacuum
infiltration, are commonly used to transiently overexpress
or knockdown a gene-of-interest. In syringe infiltration, a
needle-free syringe carrying Agrobacterium suspension is
placed on abaxial surface of leaf lamina and the suspen-
sion is slowly forced into leaves. Initially, the syringe infil-
tration method has been used to inoculate Agrobacterium
carrying TRV vectors into the leaves of N. benthamiana
[6]. However, this method was found unsuitable for some
of the other plant species, leading to the development
of diverse inoculation methods such as spray infiltration
[9], vacuum infiltration [24], pinch wounding [11], Agro-
drench [19], and sprout vacuum infiltration (SVI) [25].
In vacuum infiltration, the pressure differences between
the surface and the inside of the leaf causes the penetra-
tion of Agrobacterium into the leaf’s intercellular space.
Plant tissues immersed in Agrobacterium suspension is
placed in a vacuum chamber. The pressure in the cham-
ber is lowered for a short duration to release the air in
the intercellular spaces through the stomata. The plant
tissue is subjected to re-pressurization during which the
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suspension is drawn into the leaf through the stomata
[26, 27]. For some plant species, determining the suit-
able inoculation method requires testing several differ-
ent methods, which is time intensive. For example, four
inoculation methods have been tested for C. roseus, and
only the pinch wounding method is proven successful
[11]. The SVI method has been optimized in four Solana-
ceous crops, including tomato, eggplant (Solanum melon-
gena), pepper (Capsicum annuum), and N. benthamiana,
and the method is faster than other inoculation meth-
ods, showing silencing phenotype in the first pair of true
leaves [25]. However, the movement of the virus to the
newly developed leaves, the efficiency and time vary in
different plants. For instance, the efficiency of optimized
SVI for two Lycium barbarum and L. ruthenicum (Goji)
species only reaches approximately 30% [28]. Therefore,
the development of a widely applicable and highly effi-
cient method is necessary to advance VIGS technology.

C. roseus is a highly valued medicinal plant that accu-
mulates almost 200 terpenoid indole alkaloids (TIAs),
including the important anti-cancer drugs vinblastine
and vincristine [29]. While the biosynthesis of TIAs in
C. roseus has been extensively studied [30-32], efforts
are still ongoing to better understand the regulatory
mechanisms [33]. Methyl jasmonate (MeJA) is the major
elicitor of TIA biosynthesis, and several transcription
factors (TFs), such as CrMYC2 [34, 35], BISs [36-38],
ORCAs [39-43], RMT1 [15] and CrGBFs [35, 44], have
been characterized for their roles in the regulation of TIA
biosynthesis in response to MeJA. The vindoline biosyn-
thesis, which is not regulated by MeJA, is controlled by
the GATA-type zinc-finger TF CrGATA1 [13]. To date,
stable transformation to consistently generate transgenic
C. roseus plants has been difficult. VIGS has been widely
relied on by many laboratories in characterizing genes
encoding biosynthetic enzymes, transporters, and regula-
tors involved in TIA biosynthesis [13—15, 31, 45]. Because
the complex, dimerized TIAs are synthesized in C. roseus
leaves, transformation of hairy roots, although useful in
genetic characterization, does not allow the investigation
of TIA pathway genes that are predominantly expressed
in the leaves. Like C. roseus, the generation of stable
transgenic plants are difficult and time consuming for
many other medicinal plants, such as Glycyrrhiza inflata
[46] which produce the bioactive agent licochalcones. An
efficient VIGS technique certainly benefits the studies of
the biosynthesis and regulation of the specialized metab-
olites in these plants.
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Here we describe the development of a cotyledon-
based VIGS (cotyledon-VIGS) method for C. roseus,
which is significantly faster and more efficient than the
previously described pinch wounding method. We also
successfully extended cotyledon-VIGS to medicinal
plants G. inflata and Artemisia annua, indicating the
broad applicability of the technique. Silencing CrGATA1
or CrMYC2 in C. roseus resulted in expected downreg-
ulation of their respective target genes and reduction
in accumulation of TIAs. Additionally, we were able to
silence two repressor CrGBFs and overexpress the acti-
vator CrMYC2 simultaneously by combining cotyledon-
VIGS with a transient gene overexpression method. Our
findings demonstrated that cotyledon-VIGS is a ver-
satile tool for analysis of gene functions in recalcitrant
medicinal and crop plants. A protocol optimized for one
plant species might work for other species; however, the
parameters should still be optimized for each plant spe-
cies to achieve the best results.

Page 3 of 12

Results

Five-day-old C. roseus seedlings are ideal for cotyledon-
VIGS

The C. roseus seeds were germinated in the dark (Fig. 1a-
f). The radicles were emerged from the seed coats on the
second day (Fig. 1c), while the cotyledons fully emerged
on the fifth day (Fig. 1f). For VIGS, two commonly used
marker genes, protoporphyrin IX magnesium chelatase
subunit H (CrChlH), involved in chlorophyll biosynthesis
[47], and phytoene desaturase (CrPDS), a key enzyme in
the carotenoid biosynthetic pathway [48], were targeted
to generate visible phenotypes. Seedlings or sprouts that
were 2, 3, 4, and 5 days old were subjected to vacuum
infiltration with Agrobacterium (ODgy,=1.0) harboring
the TRV vectors for a duration of 30 min. Following the
infiltration, the sprouts or seedlings were kept in the dark
until they were 8-day-old and then exposed to light. A
clear yellow phenotype was observed in cotyledons after
silencing CrChiH, when the seedlings were first grown
in the dark, followed by 2-3 days of light exposure. The
cotyledons of the seedling infiltrated with the CrChiH-
VIGS construct stayed yellow, whereas that of the control
seedlings became green (Fig. 2a-b). Chlorophyll biosyn-
thesis is light-regulated, and as expected, seedlings grown

Fig.1 Germination of C. roseus (cv. Little Bright Eye) seeds. Phenotype of C. roseus seeds/seedlings germinated on half-strength MS medium. a-f, the flow

of seed germination from 0 (a) to 5 days (f) of growth
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Fig. 2 Cotyledon-VIGS of CrCh/H. Phenotypes of the empty vector (TRV) control (a) and CrChIH-VIGS (TRV-CrChiH) (b) seedlings show the yellow cotyle-
dons of CrChIH-VIGS seedlings. (c) Relative expression of CrChiH in control (TRV) and CrChIH-VIGS (TRV-CrChlH) cotyledons. (d) Concentrations of chloro-
phylls a (Chl a) and b (Chl b) in control (black) and CrCh/H-VIGS (gray) cotyledons. Inserted picture shows the color difference of the chlorophyll solutions
in the control (left) and TRV-CrChIH (right). CrChIH expression was measured using RT-gPCR. The C. roseus RPS9 gene was used as an internal reference
gene. The values represent means+SD from three biological replicates. For each biological replicate, entire cotyledons were pooled from 8-9 seedlings
(16-17 cotyledons). Statistical significance was calculated using Student’s t test (** P<0.01)

in the dark rapidly accumulate chlorophyll after expo-
sure to light. In our ChlH -VIGS study, it was difficult to
visually observe the yellow phenotype in the light-grown
seedlings (2 days of gemination in the dark followed by
3 days in light) even if the ChlH expression was signifi-
cantly reduced (Additional file 1: Fig. S1a and 1b) because
of the high chlorophyll content in the cells. Therefore,
we carried out Ch/H-VIGS in dark-grown seedlings ini-
tially (5 days in the dark) before exposing the seedlings
to light. The decreased expression of ChlH prior to the
light treatment yielded yellow cotyledons due to reduced
chlorophyll accumulation. The PDS gene is often used
as a marker in VIGS in many plant species including C.
roseus [12]; however, we did not observe photobleaching
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in the seedlings infiltrated with CrPDS, although CrPDS
expression was reduced by approximately 70% in the
cotyledons (Additional file 1: Fig. Sla and 1b). However,
photobleaching was observed in the first pair of true
leaves after the seedlings were transferred to soil (Addi-
tional file 1: Fig. S1c). The lack of phenotype in the coty-
ledon is possibly due to the age of the seedlings used in
this study. CrChiH thus is a more suitable marker for
cotyledon VIGS in plant species. The efficiency of silenc-
ing CrChilH was the highest (84%) when 5-day-old seed-
lings were used for infiltration (Table 1; Additional file
1: Fig. S2), indicating that complete emergence of the
cotyledons from the seed coats is necessary for efficient
Agrobacterium infection. To optimize the efficiency of
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Table 1 Optimization of cotyledon-VIGS of CrChiH in C.
roseus using different time (days) and varying Agrobacterium
concentration (ODg).
Optimization

Yellow cotyledon

Parameter (day-ODg,) efficiency*
Set 1

2d-1.0 3/50
3d-1.0 13/50
4d-1.0 24/50
5d-1.0 42/50
Set 2

5d-0.2 26/50
5d-0.5 50/50
5d-1.0 37/50
5d-2.0 28/50

*The efficiency is shown as the number of yellow cotyledons per 50 cotyledons.
Data presented here are from three biological replicates. For each biological
replicate, all cotyledons from 9 seedlings (18 cotyledons/replicate) were pooled
to determine the phenotype

cotyledon-VIGS, different ODy, values of the Agrobacte-
rium infiltration solution were tested. The best result was
achieved when the ODg,, value was at 0.5, resulting in
100% efficiency (Table 1). This optimized condition was
then used for subsequent VIGS experiments in C. roseus.

To confirm the silencing of CrChiH through cotyle-
don-VIGS, CrChiH expression in cotyledons was mea-
sured using reverse transcription quantitative PCR
(RT-qPCR). As expected, the expression of CrChlH was
reduced by 70% in the CrChliH-VIGS cotyledons com-
pared to the control (Fig. 2c). In addition, the contents
of chlorophyll a (Chla) and chlorophyll b (Chlb) were
decreased in CrChiH-VIGS cotyledons (Fig. 2d). These
results confirmed that the yellow phenotype of the coty-
ledons was due to the reduction in chlorophyll contents
resulted from silencing CrChiH. To further determine the
CrChlH-VIGS phenotype in the first pair of true leaves
and subsequent development, we grew the seedlings in
soil. However, only about 20% of the plants showed the
yellow phenotype in the first pair of true leaves (Addi-
tional file 1: Fig. S3a), and the following pair of leaves did
not show the phenotype (Additional file 1: Fig. S3b). The
results suggest that the virus cannot spread efficiently to
the newly emerged leaves in C. roseus.

Cotyledon-VIGS of CrGATAT1 in C. roseus

The sequential conversion of tabersonine to vin-
doline is catalyzed by seven genes encoding enzymes
tabersonine 16-hydroxylase 2 (T16H2), 16-hydroxy-
tabersonine  O-methyltransferase (160MT), taber-
sonine 3-oxygenase (T30), tabersonine 3-reductase
(T3R), 3-hydroxy-16-methoxy-2,3-dihydrotabersonine
N-methyltransferase (NMT), desacetoxyvindoline-4-hy-
droxylase (D4H), and deacetylvindoline-4-O-acetyltrans-
ferase (DAT) [49] (Fig. 3a). In our previous study, we have
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demonstrated that the expression of CrGATAI, a posi-
tive regulator of vindoline biosynthesis, can be effectively
knocked down using the pinch wounding VIGS method.
VIGS of CrGATA1I reduced the expression of T30, T3R,
and DAT [13]. In this study, we further validated the
applicability of cotyledon-VIGS in C. roseus by target-
ing CrGATAI. Five-day-old C. roseus seedlings (germi-
nated in dark for 2 days followed by 3 days of light) were
vacuum-infiltrated and then incubated in dark for 3 days
and in light for another 3 days. The conditions for grow-
ing C. roseus seedlings used for silencing TIA related
genes were different from those used for CrChiH-VIGS.
This is because TIA biosynthesis (especially vindoline)
requires light (darkness inhibits vindoline production).
The expression of CrGATAI reduced by approximately
70% in CrGATAI-VIGS cotyledons (Fig. 3b). Consistent
with our previous findings [13], the expression of the
vindoline pathway genes, 730, T3R, and DAT, was sig-
nificantly downregulated in the CrGATAI-VIGS coty-
ledons (Fig. 3c). Furthermore, we detected a decrease of
vindoline and an increase of tabersonine, the precursor
of vindoline synthesis, in the CrGATA1-VIGS cotyledons
(Fig. 3d), which is in agreement with our previous results
using the pinch wounding VIGS method [13]. These
results further validate the application of cotyledon-VIGS
in C. roseus for functional characterization of the path-
way genes.

Cotyledon-VIGS of CrMYC2 combined with MeJA treatment
CrMYC2 is a component of jasmonate signaling and a
key regulator of the TIA pathway. In our cotyledon-VIGS
experiments, expression of CrMYC2 was knocked down
by 90% (Fig. 4a). However, only ORCA3 showed a 40%
reduction in expression, whereas ORCA2 expression was
higher in CrMYC2-VIGS cotyledons compared to the
control (Fig. 4a). Subsequently, we treated the CrMYC2-
VIGS cotyledons with 100 uM Me]JA for 2 h before col-
lecting samples. The results showed that both ORCA2
and ORCA3 were significantly downregulated upon
CrMYC2 silencing, with ORCA3 showing an 80% reduc-
tion compared to the 40% reduction without MeJA treat-
ment (Fig. 4b). In C. roseus, the expression of CrMYC2,
ORCA2, and ORCAS3 is induced by MeJA, and CrMYC2
is essential for MeJA-responsive expression of ORCAs
[34]. In addition, other factors, such as AT-hook pro-
teins, are known to regulate ORCA expression [50]. In
the absence of MeJA, minimum expression of CrMYC2
in VIGS seedlings had little to no significant effect on the
expression of ORCA2 and ORCA3. Our results agreed
with the previously published findings [34] showing that
without MeJA treatment, RNAi-mediated silencing of
CrMYC2 in C. roseus cell lines has no significant effect
on the expression of ORCA2 and ORCA3; however, MeJA
treatment significantly affected the expression of ORCA2
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CrGATAT-VIGS cotyledons. (d) Contents of tabersonine and vindoline in the control and CrGATAT-VIGS cotyledons. Gene expression was measured using
RT-gPCR, and the C. roseus RPS9 gene was used as an internal reference gene. Alkaloids were extracted and analyzed by LC-MS/MS, and the concentrations
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and ORCA3 compared to control. Additionally, our find-
ings suggest that when conducting cotyledon-VIGS in C.
roseus, the seedlings are amenable to other treatments,
such as other phytohormones or stress conditions, pro-
viding opportunities for further investigations.

Simultaneous VIGS of CrGBF1/2 and overexpression of
amye2

Previous studies have established a seedling-based tran-
sient overexpression method for C. roseus using vacuum
infiltration [51]. Here, we aimed to explore the possibility
of simultaneously achieving gene silencing and transient
gene overexpression in C. roseus seedlings. CrGBF1/2 are
negative regulators of TIAs biosynthesis, and CrMYC2
works antagonistically with CrGBF1/2 to regulate TIAs
biosynthesis [35]. We hypothesized that overexpression
of CrMYC2 while silencing CrGBF1/2 would maximize
the levels of TIA biosynthesis. For cotyledon-VIGS, gene
fragments of CrGBF1 and CrGBF2 were fused to achieve
simultaneous silencing of both genes. The Agrobacterium
solutions for GBF1/2-VIGS and CrMYC2-overexpression
(OE) were mixed in an equal proportion prior to vac-
uum infiltration. Five-day-old seedlings (germinated in
dark for 2 days then kept in light for 3 days) were used
for Agrobacterium-infiltration, and the resulting seed-
lings were kept in the dark for 3 days and then in light
for another 3 days before measuring gene expression.
Our results showed that CrMYC2 was overexpressed by
8-fold, while CrGBF1/2 were knocked down by 60-70%
in VIGS+OE seedlings (Fig. 5a). Tryptophan decarboxyl-
ase (TDC) and strictosidine synthase (STR), two enzymes
in the TIA pathway, are the targets of CrMYC2 and
CrGBF1/2. Tryptophan is decarboxylated by TDC to pro-
duce tryptamine, the indole moiety of TIA. Condensation
of tryptamine with the terpenoid moiety secologanin to
produce the first TIA, strictosidine, is catalyzed by STR
[52]. The expression of TDC and STR was induced signif-
icantly (46 fold) in the VIGS+OE cotyledons (Fig. 5a).
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However, TDC expression was induced moderately
(2-fold) whereas that of STR was repressed when only
CrMYC2 was overexpressed (Fig. 5b). The expression
of MYC2 increased 8-fold in VIGS+OE seedlings com-
pared to control whereas it increased 5-fold in MYC2-OE
seedlings (Fig. 5a and b). This difference in MYC2 expres-
sion could possibly be the effect of silencing of the GBFs
in VIGS+OE seedlings. These findings suggest that the
cotyledon-VIGS method can be combined with transient
gene overexpression to achieve simultaneous up- and
down-regulation of desired genes in C. roseus.

Application of cotyledon-VIGS in G. inflata and A. annua
The success of cotyledon-VIGS in C. roseus prompted us
to apply this method to other plants including G. inflata
and A. annua, two important medicinal plants. We ini-
tially used the conditions that worked well for C. roseus
(30 min infiltration with ODgy, 0.5 Agrobacterium solu-
tion). However, silencing efficiency was low for G. inflata
possibly because the cotyledons are very thick. There-
fore, for G. inflata, the infiltration time was increased
to 60 min and the concentration of infiltration solution
was increased to ODg,,=1.0 to achieve the best efficiency
(Table 2). In contrast, A. annua seedlings are sensitive
to long exposure (i.e. 30 min) to Agrobacterium infiltra-
tion. We thus reduced the infiltration time to 10 min
for A. annua (Table 2). Six to seven-day-old seedlings
germinated in dark were used for VIGS. The respective
ChlH genes were used for cotyledon-VIGS in both plants,
and we observed yellow-colored cotyledons with 100%
efficiency (Table 2; Fig. 6a and d), which was confirmed
by measuring the chlorophyll concentration and gene
expression (Fig. 6b, ¢, e and f). Based on these results, we
conclude that cotyledon-VIGS is a promising and gener-
ally applicable technique for investigating gene function
in plants.
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Fig. 5 Cotyledon-VIGS of CrGBF1/GBF2 and overexpression of CrMYC2. (a) Relative expression of CrGBF1, CrGBF2, CrMYC2, TDC and STR in empty vector
control (TRV) and CrGBF1/GBF2/MYC2 cotyledons. (b) Relative expression of CrMYC2, TDC and STR in empty vector control and CrMYC2 overexpression
cotyledons. Relative expression was measured by RT-gPCR, and the C. roseus RPS9 gene was used as an internal reference gene. The values represent
means+ SD from three biological replicates. For each biological replicate, entire cotyledons were pooled from 8-9 seedlings (16-17 cotyledons). Statisti-

cal significance was calculated using Student’s t test (** P<0.01)
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Table 2 Optimized conditions of the cotyledon-VIGS in two
medicinal plants
Plants/Conditions

Glycyrrhiza Arte-

inflata misia

annua
Seedling age 7 6
(days)
Infiltration time 60 10
(minutes)
ODgq of 1.0 0.5
infiltration solution
Efficiency* 30/30 50/50

*After infiltration with the VIGS vectors, the seedlings were incubated for 6
days (3 days in dark and then 3 days in 16 h light /8 h dark regime), to record
yellow cotyledon phenotype. The efficiency is shown as the number of yellow
cotyledons per 30-50 cotyledons

Discussion
VIGS is a valuable tool for plant functional genomics and
has been extensively used to decipher the gene functions
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in developmental and metabolic pathways [1-3, 12,
13, 15]. VIGS is especially useful for non-model plant
species for which the generation of stable transgenic
plants is often challenging [1]. To enhance the applica-
bility of VIGS, various infiltration methods have been
developed, among which the sprout vacuum infiltration
(SVI) method allows for high-throughput gene func-
tion analysis [25]. SVI-based VIGS and other seed-based
infiltration methods [10, 18] are rapid and the bleaching
phenotype is usually easy to observe in the first pair of
true leaves. However, for plants with a prolonged devel-
opmental period, the application of SVI method is more
time consuming. For C. roseus, the first pair of true
leaves appear 3 weeks after germination [51]. The coty-
ledon-VIGS method (Fig. 2) circumvents this issue and
maximizes the efficiency of the VIGS. In our laboratory,
5-day-old C. roseus seedlings were used for Agrobacte-
rium-infiltration and samples were ready for collection 6
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Fig.6 Cotyledon-VIGS of ChlH genes in G. inflata and A. annua. (a) Phenotypes of empty vector control (TRV) and GiCh/H-VIGS (TRV-GiChlH) seedlings. (b)
Relative expression of GIiChIH in the control and GiChIH-VIGS cotyledons. (€) Concentration of chlorophylls a (Chl a) and b (Chl b) in the control and GiChIH-
VIGS cotyledons. (d) Phenotypes of TRV control and AaCh/H-VIGS (TRV-AaChiH) seedlings. (e) Relative expression of AaChlH in the control and AaChlH-
VIGS cotyledons. (f) Concentration of Chl a and Chl b in control and AaCh/H-VIGS cotyledons. In a and d, the yellow cotyledons of the VIGS seedlings are
consistent with the chlorophyll extractions showing in the inserts of ¢ and f (Left, TRV control; right, ChIH-VIGS). Relative expression was measured using
RT-gPCR, and the A. annua and G. inflata Actin genes were used as an internal reference. The values represent means = SD from three biological replicates.
For each biological replicate, entire cotyledons were pooled from 8-9 seedlings (16-17 cotyledons) for A. annua, and 4-5 seedlings (8-10 cotyledons) for
G. inflata. Statistical significance was calculated using Student’s t test (* P<0.05 and ** P<0.01)
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days after infiltration. Moreover, cotyledon-VIGS retains
the high-throughput advantage of SVI. The efficiency
of VIGS varies for each individual gene. The silencing
efficiency of genes varies from 60 to 90% in our study
(Figs. 3,4, 5 and 6).

Previous studies have reported varying efficiency of
different infiltration methods in different plant species.
For instance, while SVI has been highly effective in cer-
tain Solanaceous crops, such as tomato and eggplant
[25], its efficiency in two Goji species (Lycium species),
which also belong to Solanaceae, is notably lower [28].
The pinch wounding method has been found to be suit-
able for C. roseus [11]; however, its efficiency is difficult
to determine, leading to the development of an improved
method in which the marker gene CrPDS is simultane-
ously silenced with the target gene to visualize the gene
silencing effect [16]. The inconsistency in silencing may
be attributed to the requirement of the virus to spread
through vascular tissue to the distant plant tissues. We
found that the VIGS efficiency greatly declined in the
newly emerged leaves (Additional file 1: Fig. S3). In con-
trast, cotyledon-VIGS does not necessitate long-distance
viral spread, making it highly efficient in diverse plant
species. We demonstrated 100% efficiency in cotyledon-
VIGS for C. roseus, G. inflata, and A. annua (Tables 1
and 2), suggesting its potential as a general and efficient
VIGS method for most plant species.

C. roseus accumulates two valuable anti-cancer agents,
vinblastine and vincristine, specifically in leaves, with
catharanthine and vindoline being their direct precur-
sors. Understanding the regulatory mechanisms under-
lying the biosynthesis of catharanthine and vindoline
can serve as a foundation for improving vinblastine and
vincristine production. Although vinblastine and vincris-
tine are not accumulated in the cotyledon of C. roseus,
catharanthine and vindoline are readily produced [53].
Cotyledon-VIGS of CrGATAI reiterated the positive
effects of CrGATAL in regulating vindoline biosynthesis
(Fig. 3). Additionally, CrMYC2 and its targets, ORCAs,
act as general regulators of catharanthine and most trypt-
amine-derived indole alkaloids upstream of vindoline
[34]. Cotyledon-VIGS of CrMYC2, followed by JA treat-
ment, further validated the effects of CrMYC2 on its tar-
get genes and the involvement of the JA signaling (Fig. 4).
Therefore, cotyledon-VIGS provides a platform for inves-
tigating the regulatory mechanisms of catharanthine and
vindoline, as well as other upstream TIAs.

The combination of cotyledon-VIGS with transient
overexpression in C. roseus seedlings allows for inves-
tigating the relationship between multiple factors in a
pathway, even in non-model plants where stable trans-
formation is challenging. By overexpressing the activator
CrMY(C2 and simultaneously knocking down two repres-
sors, CrGBFI1 and CrGBF2, using cotyledon-VIGS, we

28
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observed a greater upregulation of TDC and STR com-
pared to control and the individual gene manipulation
(Fig. 5).

Cotyledon-VIGS overcomes several issues facing the
previously established VIGS methods and can be used
for other non-model plant species. Although a proto-
col optimized for one species might work for other spe-
cies, the parameters still need to be fine-tuned for each
plant species to achieve optimal results. Each plant spe-
cies is different with respect to germination time, size,
and morphology of the cotyledon, as well as the sensitiv-
ity to Agrobacterium infection. In our study, the param-
eters that worked well for C. roseus did not yield the best
results for G. inflata and A. annua. Therefore, certain
conditions, such as age of the seedling, density (ODy,) of
Agrobacterium-suspension, and infiltration time, should
be optimized for each plant species to achieve optimal
results. It is reasonable to suggest cotyledon-VIGS as a
general platform for gene silencing and investigation of
the synergistic effects of multiple genes. Cotyledon-VIGS
is most effective in studying genes that are expressed in
early development. Nonetheless, we were also able to
obtain cotyledon-VIGS C. roseus plants that developed
true leaves, making the system potentially useful for
studying late stage-expressed genes.

Methods

Plant materials and growth conditions

Seeds of C. roseus (cultivar ‘Little Bright Eye’; obtained
from NESeed, USA) were used in this study. The seeds
were surface sterilized using 75% ethanol for 5 min and
then 30% sodium hypochlorite solution (Sigma-Aldrich)
for 10 min. After rinsing with sterile ddH,O for 5 times,
the seeds were inoculated on half-strength Murashige
and Skoog (%» MS) medium. The seeds were kept in the
dark at 30 °C for two days and then transferred to an
incubator at 26 °C. For VIGS experiments targeting the
CrChlH (accession numbers HQ608936) and CrPDS
(accession number JQ655739) in C. roseus, the germi-
nated seeds were grown in the dark for another 3 days.
However, for VIGS of TIA pathway genes, the germi-
nated seeds were grown under a light regime of 16/8
photoperiod for 3 days.

For VIGS of ChlH genes in G. inflata, and A. annua,
the seeds of respective species were germinated on half-
strength MS medium, and seedlings were grown in the
dark at 26 C. Seeds of G. inflata were treated with H,SO,
for 30 min [46], surface sterilized with 30% sodium hypo-
chlorite solution (Sigma-Aldrich) for 10 min, and germi-
nated on half-strength MS medium for 7 days in dark.
Seeds of A. annua were surface sterilized as described
for C. roseus seeds and germinated on half-strength MS
medium for 6 days in dark.
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Plasmid construction and Agrobacterium transformation
The primers used for plasmid construction are listed in
Additional file 1: Table S1 and the vectors are schemati-
cally presented in Additional file 1: Figure S4. For VIGS
vectors, fragments of target genes were amplified with
primers containing Kpnl and Xhol restriction enzyme
recognition sites and inserted into the multiple cloning
sites (MCS) of pTRV2 [9]. Fragments of CrGBF1 (acces-
sion numbers AF084971) and CrGBF2 (accession num-
bers AF084972) were fused together using primers with
overlapping sequences. The VIGS vectors for silencing
CrChiH, CrPDS [12], CrGATAI [13], and overexpressing
CrMYC2 (accession number AF283507) [35] have been
described previously. The ChiH gene sequences of G.
inflata and A. annua were obtained from an unpublished
G. inflata transcriptome and a published A. annua tran-
scriptome [54], respectively (Additional file 1: Supple-
mentary text).

Agrobacterium tumefaciens strain GV3101 compe-
tent cells stored at -80 °C were thawed on ice and then
mixed with 500 ng of recombined plasmids. The mixture
was kept on ice for 30 min and then rapidly frozen in
liquid nitrogen for 30 s, followed by incubation at 37 °C
for 5 min. The cells were returned to ice for 5 min and
quenched with 500 pL of fresh Luria Broth (LB) liquid
medium. Following incubation in a shaker at 28 °C and
200 rpm for 2.5 h, 100 pL of cells were plated onto LB
agar plates containing rifampicin (30 mg/L) and kanamy-
cin (100 mg/L) and incubated at 28 °C for 3 days.

Agrobacterium culture and preparation of infiltration

A single positive colony of transformed Agrobacterium
was inoculated into 1 mL of LB liquid medium containing
30 mg/L rifampicin and 100 mg/L kanamycin, followed
by overnight culturing in a shaker at 28 °C with a speed
of 200 rpm. Subsequently, 100 pL of Agrobacterium cells
were transferred into 10 mL of fresh LB liquid medium
supplemented with the aforementioned antibiotics and
cultured overnight at 28 °C with a speed of 200 rpm. The
Agrobacterium cultures were then centrifuged at 6000 g
for 5 min, and the resulting pellet was resuspended in an
infiltration buffer containing 10 mM MgCl,, 10 mM MES,
and 100 pM acetosyringone, at a desired ODy, (optical
density at 600 nm). The suspension was then incubated
at 28 °C for at least 3 h. Afterward, the infiltration solu-
tion was mixed with Silwet L-77 at a concentration of
0.01% ‘and was ready for infiltration. For simultaneous
VIGS+OE (overexpression), Agrobacterium harbor-
ing the CrGBF-VIGS and CrMYC2-OE constructs were
mixed in equal proportions before infiltration.

Infiltration of the seedlings
Sprouts or seedlings of C. roseus, G. inflata, and A. annua
were immersed in the infiltration solution in either a 15
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mL or 50 mL tube. The opening of the tube was covered
with parafilm that was punctured to produce small holes
to allow for air exchange. For VIGS of the ChlH or PDS
gene, the tubes were wrapped with aluminum foil to pre-
vent light exposure (Additional file 1: Figure S5a) and
placed in a vacuum chamber. The infiltration was carried
out at the desired pressure of 20 kPa and for the appro-
priate duration (Additional file 1: Figure S5b). Afterward,
the pressure was slowly released. Sprouts or seedlings
were gently taken out from the tubes, washed with sterile
distilled water for five times, and placed on petri dishes
with autoclaved wet filter papers. The seedlings were then
kept in the dark at 26 °C for 3 days, followed by trans-
ferring to light (15-20 pmol m™? s™%; photoperiod 16/8)
for 3 days. For VIGS of the ChlH gene, cotyledons were
harvested for chlorophyll content determination and
RNA isolation, or the seedlings were transferred to soil
for further observation. For VIGS of CrMYC2, infiltrated
C. roseus seedlings were treated with 100 pM MeJA for
2 h 6 days after infiltration. For VIGS of CrGATA1, infil-
trated C. roseus seedlings were kept in the dark for 3 days
and then in 16 h light/8 h dark for another 3 days. The
cotyledons were then collected for gene expression and
metabolite analysis.

Determination of chlorophyll contents

The protocol for chlorophyll content determination has
been previously described [55]. Briefly, samples were
weighed and placed in 1 mL of dimethyl-formamide
(DMF) and kept in the dark at 4 °C overnight. Optical
density at 664 nm and 647 nm (A4, and Ag,;) was mea-
sured using a spectrophotometer, using pure DMF as a
blank. The contents of chlorophyll a (C,) and chlorophyll
b (C,)) were calculated using the following formulas: C, =
11.65%A 4 — 2.69%A ¢4 Cp = 20.81xAg,, — 4.53XA 4,

RNA isolation, cDNA synthesis, and RT-qPCR

Total RNA was extracted from C. roseus VIGS cotyle-
dons using the RNeasy Plant Mini Kit according to the
manufacturer’s instructions (QIAGEN, United States).
Approximately 2 pg of total RNA was treated with DNase
I to remove contaminating genomic DNA. First-strand
cDNA synthesis was carried out using Superscript III
reverse transcriptase (Invitrogen, United States) in a
total reaction volume of 20 pL. Reverse transcription
quantitative PCR (RT-qPCR) was performed to measure
the transcript levels of target genes. CrRPS9 was used as
an internal control for normalization [40]. AaActin and
GiActin were used as internal control for A. annua and
G. inflata, respectively. Relative gene expression was
determined as previously described [13]. All RT-qPCRs
were performed in triplicate and repeated twice to ensure
accuracy and reproducibility. The primer sequences used
for RT-qPCR are provided in Additional file 1: Table S1.
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Alkaloid extraction and analysis

Extraction and analysis of alkaloids from C. roseus VIGS
cotyledons were performed as described previously [13].
The concentrations of the alkaloids were calculated using
a standard curve.

Supplementary Information
The online version contains supplementary material available at https://doi.
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TOBACCO RESEARCH INCOME

INCOME COMPARISON

Fiscal Years 2019-2020 2020-2021 2021-2022 2022-2023 2023-2024 2024-2025 2025-2026
July $141,864.01 | $136,565.92 [ $102,816.87 | $113,853.04 | $- $97,579.97 $84,421.42
August $145,789.42 $11,873.82 | $148,863.59 | $121,485.75| $235,814.07 | $113,878.38 $94,787.78
September $132,169.60 | $261,157.23 | $138,395.19 | $143,503.64 | $116,834.55 | $112,212.24 | $109,954.48
1st QUARTER $419,823.03 | $409,596.97 | $390,075.65 | $378,842.43 | $352,648.62 | $323,670.59 | $289,163.68
October $150,849.00 | $141,682.93 | $138,913.78 | $131,512.77 $84,290.07 $86,565.34 | $-

November $117,280.34 | $135,157.14 | $101,844.54 [ $101,050.68 | $132,736.05 $88,478.89 | $-

December $151,323.23 | $159,616.92 | $138,232.14 | $113,515.64 $81,648.61 $90,136.26 | $-

2nd QUARTER $419,452.57 | $436,456.99 | $378,990.46 | $346,079.09 | $298,674.73 | $265,180.49 | $-

January $120,247.87 $93,056.96 | $116,044.01 | $111,657.62 | $101,501.91 $78,472.89 | $-

February $114,095.14 | $125,797.09 $89,271.71 $78,955.86 $77,922.09 | $125,701.11 | $-

March $403,962.17 | $143,903.75 | $140,521.53 | $119,175.49 | $105,636.69 $45,037.80 | $-

3rd QUARTER $638,305.18 | $362,757.80 | $345,837.25 [ $309,788.97 | $285,060.69 | $249,211.80 | $-

April $117,862.64 | $144,970.47 | $127,449.97 $79,639.90 | $119,161.48 $94,449.22 | $-

May $141,525.18 | $100,238.76 | $148,769.94 [ $120,890.24 $88,889.28 $80,887.20 | $-

June $138,849.18 | $211,130.06 | $121,204.33 [ $149,991.92 | $154,407.96 | $103,211.51 | $-

4th QUARTER $398,237.00 | $456,339.29 | $397,424.24 [ $350,522.06 | $362,458.72 | $278,547.93 | $-

TOTAL INCOME | $1,875,817.78 | $1,665,151.05 | $1,512,327.60 | $1,385,232.55 | $1,298,842.76 |$1,116,610.81 | $289,163.68
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PriorMonth  |Current Month YTD
Funds Center [Funds Center Name Category Original Budget [AnnualBudget |Balance Actual YTD Actual Encumbrances |Available Budget
1235410080 |KTRDC HOLDING ACCOUNT Revenue ($1,723,000.00)| ($1,723,000.00)| ($179,209.20)| ($109,954.48)| ($289,163.68) ($1,433,836.32)
1235410080 |Result Total ($1,723,000.00)| ($1,723,000.00)| ($179,209.20)| ($109,954.48)| ($289,163.68) ($1,433,836.32)
1235410090 [KENTUCKY TOBACCO RESEARCH BOARD Operating Expenses $1,000.00 $1,000.00
1235410090 |Result Total $1,000.00 $1,000.00
1235410100 |KTRDC ADMINISTRATION Salaries $1,723,000.00 $260,000.00{ $28,779.46| $14,564.24|  $43,343.70 $138,752.29 $77,904.01
1235410100 |KTRDC ADMINISTRATION Benefits $10,846.41 $6,142.52|  $16,988.93 $58,799.07 ($75,788.00)
1235410100 |KTRDC ADMINISTRATION Operating Expenses $812.60 $537.90 $1,350.50 $0.00 ($1,350.50)
1235410100 |KTRDC ADMINISTRATION Recharges $6.81 $5.97 $12.78 ($12.78)
1235410100 |Result Total $1,723,000.00 $260,000.00| $40,445.28| $21,250.63| $61,695.91 $197,551.36 $752.73
1235410110 |KTRDC PERSONNEL Salaries $69,101.97| $32,333.57| $101,435.54 $202,201.40| ($303,636.94)
1235410110 |KTRDC PERSONNEL Benefits $19,004.72| $11,292.07| $30,296.79 $61,463.13 ($91,759.92)
1235410110 |KTRDC PERSONNEL Operating Expenses $1,000,000.00 $2,930.38| ($1,875.53) $1,054.85 $998,945.15
1235410110 |KTRDC PERSONNEL Recharges $7,665.13 $6,725.07|  $14,390.20 ($14,390.20)
1235410110 |Result Total $1,000,000.00| $98,702.20| $48,475.18| $147,177.38 $263,664.53 $589,158.09
1235410120 |KTRDC PUBLICATIONS AND TRAVEL Operating Expenses $25,000.00 $21.20 $3,810.81 $3,832.01 $21,167.99
1235410120 |KTRDC PUBLICATIONS AND TRAVEL Recharges $27.47 $157.84 $185.31 ($185.31)
1235410120 |Result Total $25,000.00 $48.67 $3,968.65 $4,017.32 $20,982.68
1235410130 |KTRDC BUILDING MAINTENANCE Operating Expenses $50,000.00] $11,123.48 $748.34| $11,871.82 $0.00 $38,128.18
1235410130 |KTRDC BUILDING MAINTENANCE Recharges $1,473.12 $129.33 $1,602.45 ($1,602.45)
1235410130 |Result Total $50,000.00]  $12,596.60 $877.67|  $13,474.27 $0.00 $36,525.73
1235410180 |KTRDC SHOP Operating Expenses $2,000.00 $0.00 $0.00 $2,000.00
1235410180 |Result Total $2,000.00 $0.00 $0.00 $2,000.00
1235410240 |KTRDC LABORATORY EQUIPMENT Operating Expenses $40,000.00 $3,697.70 $1,848.85 $5,546.55 $34,453.45
1235410240 |Result Total $40,000.00 $3,697.70 $1,848.85 $5,546.55 $34,453.45
1235410250 |KTRDC UNALLOCATED RESERVE FORRESEARCH  |Operating Expenses $90,000.00 $90,000.00
1235410250 |Result Total $90,000.00 $90,000.00
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Prior Month  |Current Month YTD
Funds Center [Funds Center Name Category Original Budget [AnnualBudget |Balance Actual YTD Actual Encumbrances |Available Budget
1235410280 |KTRDC GENERAL LABORATORY Operating Expenses $50,000.00 $4,375.12 $1,088.65 $5,463.77 $0.00 $44,536.23
1235410280 |KTRDC GENERAL LABORATORY Recharges $462.16 $1.12 $463.28 ($463.28)
1235410280 |Result Total $50,000.00 $4,837.28 $1,089.77 $5,927.05 $0.00 $44,072.95
1235411040 |KTRDC DISCRETIONARY Operating Expenses $20,000.00 $144.55 $212.10 $356.65 $19,643.35
1235411040 |KTRDC DISCRETIONARY Recharges $1.73 $2.55 $4.28 ($4.28)
1235411040 |Result Total $20,000.00 $146.28 $214.65 $360.93 $19,639.07
1235411310 |KTRDC OUTREACH & COMMUNICATIONS Operating Expenses $20,000.00 $20,000.00
1235411310 |Result Total $20,000.00 $20,000.00
1235411340 |GENETIC MANIPULATION OF TOBACCO TO Salaries $0.00
1235411340 |GENETIC MANIPULATION OF TOBACCO TO Benefits $0.00
1235411340 |GENETIC MANIPULATION OF TOBACCO TO Operating Expenses $30,000.00 $30,000.00
1235411340 |Result Total $30,000.00 $30,000.00
1235411360 |PLANT BIOTECH METABOLIC Operating Expenses $30,000.00 $3,494.17 $1,299.96 $4,794.13 $3,404.00 $21,801.87
1235411360 |PLANT BIOTECH METABOLIC Recharges $40.70 $11.87 $52.57 ($52.57)
1235411360 |[Result Total $30,000.00 $3,534.87 $1,311.83 $4,846.70 $3,404.00 $21,749.30
1235411370 |KTRDC PLANT BIOTECH - MOLECULAR Operating Expenses $30,000.00 $3,374.17 $7,150.59 $10,524.76 $127.40 $19,347.84
1235411370 |KTRDC PLANT BIOTECH - MOLECULAR Recharges $2,349.59 $490.41 $2,840.00 ($2,840.00)
1235411370 |Result Total $30,000.00 $5,723.76 $7,641.00 $13,364.76 $127.40 $16,507.84
1235411380 |MOLECULAR GENETICS Operating Expenses $30,000.00 $1,995.21 $81.94 $2,077.15 $0.00 $27,922.85
1235411380 |MOLECULAR GENETICS Recharges $23.25 $0.95 $24.20 ($24.20)
1235411380 |Result Total $30,000.00 $2,018.46 $82.89 $2,101.35 $0.00 $27,898.65
1235411410 |KTRDC GREENHOUSE Operating Expenses $15,000.00 $83.15 $83.45 $166.60 $1,768.60 $13,064.80
1235411410 |KTRDC GREENHOUSE Recharges $742.38 $611.50 $1,353.88 ($1,353.88)
1235411410 |Result Total $15,000.00 $825.53 $694.95 $1,520.48 $1,768.60 $11,710.92
1235411570 |TOBACCO MOLECULAR FARMING AGRONOMICS  |Recharges $0.00 $0.00 $0.00
1235411570 |Result Total $0.00 $0.00 $0.00
1235412360 |FLAVONOID - SMALLE Salaries $1,776.50 $934.99 $2,711.49 $3,416.04 ($6,127.53)
1235412360 |FLAVONOID - SMALLE Benefits $898.80 $454.00 $1,352.80 $1,493.66 ($2,846.46)
1235412360 |FLAVONOID - SMALLE Operating Expenses $30,000.00 $30,000.00
1235412360 |Result Total $30,000.00 $2,675.30 $1,388.99 $4,064.29 $4,909.70 $21,026.01
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