

AI in Healthcare

Cody Bumgardner, PhD

Director, Center for Applied Al Chief, Pathology Informatics Associate Professor Dept. Pathology and Computer Science

Spectrum of AI Abilities and Risk

Narrow AI (AI):

- Developed for a single job or set of tasks
- Disease detection: benign or malignant?
- 950 FDA-authorized AI Medical Devices

Generative AI (GenAI):

- Seemingly cognitive capabilities and contextual understanding across a broader range of inputs (language, vision, etc.)
- Health Assistant: What programs or clinical trials do I personally qualify for?

Artificial General Intelligence (AGI):

- Self-instructing
- Design a new drug for X

https://www.plugger.ai/blog/general-ai-vs-narrow-ai-2022-guide

Predicting Extubation Readiness in Preterm Infants

The Journal of Pediatrics

Brasher, M.D., Virodov, M.S., Raffay, M.D., Bada, M.D., M.P.H., Cunningham, M.D., Bumgardner, Ph.D., Jawdeh M.D., Ph.D.

Objective: To predict extubation readiness in preterm infants using machine learning analysis of bedside pulse oximeter and ventilator data.

Study Design: This is an observational study with prospective recordings of oxygen saturation (SpO_2) and ventilator data from infants < 30 weeks gestation age (GA). Research pulse oximeters collected SpO_2 (1 Hz sampling rate) to quantify intermittent hypoxemia (IH). Continuous ventilator metrics were collected (4-5 min sampling) from bedside ventilators.

Institute for

Biomedical Informatics

Top performing models by data source and subset population.									
Data source	Population	n Algorithm		AUC	Sens	Spec	PPV	NPV	
IH + SIMV	All	65	Random Forest	0.77	0.59	0.91	0.74	0.84	
	Age < 2 wks	24	Random Forest	0.94	0.78	0.85	0.78	0.86	
	Age ≥ 2 wks	41	XGBoost	0.83	0.42	0.97	0.83	0.83	
IH	All	73	SGDClassifier	0.74	0.47	0.81	0.50	0.80	
	Age < 2 wks	27	XGBoost	0.77	0.56	0.72	0.42	0.79	
	Age ≥ 2 wks	46	XGBoost	0.72	0.17	0.91	0.33	0.76	
SIMV	All	100	Random Forest	0.71	0.13	0.88	0.31	0.75	
	Age < 2 wks	51	Bagging	0.87	0.80	0.78	0.60	0.90	
	Age ≥ 2 wks	49	XGBoost	0.71	0.36	0.92	0.75	0.83	

THE JOURNAL OF

March 2024 - https://pubmed.ncbi.nlm.nih.gov/38561049/

FAST Ultrasound (Focused Assessment with Sonography in Trauma)

Artificial intelligence evaluation of focused assessment with sonography in trauma

Brittany E Levy ¹, Jennifer T Castle, Alexandr Virodov, Wesley S Wilt, Cody Bumgardner, Thomas Brim, Erin McAtee, Morgan Schellenberg, Kenji Inaba, Zachary D Warriner

Detect positivity and adequacy of FAST examinations with **94%** and **97%** accuracy, aiding in the standardization of care delivery with **minimal expert clinician input.**

Biomedical Informatics

Institute for

Hospital Operations

1. Queueing Model

- Modeling hospitals/EDs and sources of patients
- Edges are "queues" where patients wait to be serviced
- Arrival and service functions define flow of patients through system
- Queue data can be analyzed at different points in time

2. Prediction

- Can number of ED arrivals on a given day be predicted?
- Would help with staffing requirements and control of clinic transfers
- Uses many predicted values to make forecasts
 - Temperature, precipitation, snow, atmospheric pressure, air quality, and more

Strategic Planning in Healthcare

- Optimized estimates for CMS rankings
- Determine systemspecific issues
- Provide tools to recalculate score on demand

Feature	SD's
ED_2B	-5.90
OP_13	-2.85
SEP_1	-2.51
PSI_4_SURG_COMP	-2.44
PC_01	-2.24
EDAC_30_PN	-1.81
MORT_30_AMI	-1.67
EDAC_30_HF	-1.61
PSI_90_SAFETY	-1.60
READM_30_HOSP_WIDE	-0.89

CMS Score Approximator

Provider ID: 180067

Mortality Measures

MORT_3	30_AI	MI:				.144	
MORT_3	30_CA	ABG				.03	33
MORT_3	30_C0	OPD:				08.	2
MORT_3	30_HI	F: 🗲				132	
MORT_3	30_PN	J: 🗲				163	
MORT_3	30_ST	K:				.141	
PSI_4_S	URG_		MP: 🧲				212.85
					a		
	Minii	num	Maxim	um			
STAR: 1	-2.208	3733	-0.8833	60			
STAR: 2	-0.877	7353	-0.4086	83			
STAR: 3	-0.400	5907	-0.0435	01			
STAR: 4	-0.042	2455	0.34385	58			
STAR: 5	0.347	313	1.38767	17			
					J		
Mortality	Score	Safet	y Score	Rea	dmission S	Score	Patient Experience Scor
-0.54323		-0.12	2939	-0.3	40259		0.056925

	Variable Weight
PSI_4_SURG_COMP	-0.118523
ED_2B	-0.108400
MORT_30_AMI	-0.081034
EDAC_30_PN	-0.069375
PSI_90_SAFETY	-0.067217
EDAC_30_HF	-0.059938
OP_13	-0.052428
MORT_30_HF	-0.048141
SEP_1	-0.046385
PC_01	-0.041369
READM_30_HOSP_WIDE	-0.033152
HAI_5	-0.023096
OP_36	-0.019745
MORT_30_STK	-0.016313
MORT_30_PN	-0.014856
MORT_30_CABG	-0.013873
OP_35_ED	-0.012089
HAI_1	-0.010227
EDAC_30_AMI	-0.009778
H_COMP_3_STAR_RATING	G -0.008769
U CLOD STAD DATING	0.000260
Process Scor Summary Sco	re STAR Rating

-0.417523

2

-1.738601

Public Health: Overdose Forecasting

- Covariates can be used to greatly improve forecast accuracy
- There are differences across model performance based on race, that can't be accounted for in dataset distribution

Overdose, by Race and Ethnicity

Institute for

Biomedical Informatics

Stratification	MAPE Score
All opioid	18%
Hispanic	17%
Non-Hispanic White	30%
Non-Hispanic Black	50%

MAPE Interpretation				
< 10 %	Very good			
10 % - 20 %	Good			
20 % - 50 %	ОК			
> 50 %	Not good			

Generative Models

Foundational Models

- Text, imaging, timeseries (EKG, eICU), genomics, etc.
- Observe large volumes of data and provide numeric characterizations of inputs (Cancer, Alzheimer's, etc. features)
- Allows us to holistically leverage medical data across disciplines like never before

	age	S
<u> </u>		35
		66
		43
		68
		40
		27

age 🔻	sex 💌	race 💌	alb 💌	tlc 💌	f_0 💌	f_1	•		f_767	•
35	0	1	3.2	0.58	0.019998	8 -0.021	9 0.526705	92	0.0989	22
66	0	1	2.9	0.72	0.110704	-0.3114	2 -0.00740	99	-0.069	65
43	1	1	1.2	1.7	-0.20204	0.09892	2 0.019998	03	-0.007	41
68	1	1	3.3	0.91	0.526706	6 -0.2020	4 0.110704	08	0.0199	98
40	1	1	1.6	1.12	-0.06965	0.01999	8 -0.02190	24	-0.311	42
27	1	1	3.7	2.02	-0.31142	2 -0.2020	4 0.110704	08	0.5267	06
31	0	1	2.8	0.87	0.098922	2 -0.0696	5 -0.02190	24	-0.202	04

Case Data

Image + Genomic

Al Assistants and Agents (Today)

For Patient:

- Interpret questions
- Provide curated information
- Distill responses

For Provider:

- Summarize/locate information
- Act as research agent:
 - PubMed discovery, phenotype identification, etc.
 - EMR -> clinicaltrails.gov

OptimalCT: AI-Assisted Structured Survey Response

Physical interface to AI Assistants

Robotic assistants

- Interface for telemedicine, wayfinding, and AI assistants
- Currently deployed in hospitals and elder care
- AI & Smell Integration
- ~\$6k each

What others are doing

- University at Buffalo: FY 2025 Budget Includes 10-Year, \$275 Million Investment to Create a State-of-the-Art Artificial Intelligence Computing Center <u>https://www.budget.ny.gov/pubs/press/2024/fy25-enacted-budget-launches-empire-ai-consortium.html</u>
- University of Florida \$140 Million in state funding for a new Data Center, plus \$15 million per year from the State of Florida to hire 100 new faculty members. <u>https://www2.datainnovation.org/2022-ai-universities.pdf</u>
- Oregon State University: During the 2023 Oregon legislative session, OSU received over \$70 million in state-paid bonding to match philanthropic and university contributions to the collaborative innovation complex.
 https://leadership.oregonstate.edu/huang-cic/faqs

Considerations

- Infrastructure
 - Historically, many states have launched and supported high-performance/scientific computing consortiums, is it time for Kentucky to do the same?
- Patients
 - Right to privacy is clear, but what about data sharing rights?
 - The U.S. Department of Health and Human Services (HHS) today released a final rule that establishes disincentives for health care providers that have committed information blocking. <u>https://www.hhs.gov/about/news/2024/06/24/hhs-finalizes-rule-establishing-</u> <u>disincentives-health-care-providers-that-have-committed-information-blocking.html</u>
- State
 - Should Kentucky patients be enrolled by default in a state-wide medical registry (could be deidentified data), like we do with cancer patients?
 - Foundational models for Kentucky patients could be developed with completely anonymized data and distributed back to the community.
 - Could our state laboratory be extended to include "send-out" AI-based analysis?
 - Should our state provide/support expertise in the use and validation of AI for clinical care? Not all AI health tools with regulatory authorization are clinically validated <u>https://www.nature.com/articles/s41591-024-03203-3</u>